Effects of S-Adenosylmethionine and Its Combinations With Taurine and/or Betaine on Glutathione Homeostasis in Ethanol-induced Acute Hepatotoxicity
نویسندگان
چکیده
BACKGROUND Exposure to ethanol abuse and severe oxidative stress are risk factors for hepatocarcinoma. The aim of this study was to evaluate the effects of S-adenosylmethionine (SAMe) and its combinations with taurine and/or betaine on the level of glutathione (GSH), a powerful antioxidant in the liver, in acute hepatotoxicity induced by ethanol. METHODS To examine the effects of SAMe and its combinations with taurine and/or betaine on ethanol-induced hepatotoxicity, AML12 cells and C57BL/6 mice were pretreated with SAMe, taurine, and/or betaine, followed by ethanol challenge. Cell viability was detected with an MTT assay. GSH concentration and mRNA levels of GSH synthetic enzymes were measured using GSH reductase and quantitative real-time reverse transcriptase-PCR. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were measured with commercially available kits. RESULTS Pretreatment of SAMe, with or without taurine and/or betaine, attenuated decreases in GSH levels and mRNA expression of the catalytic subunit of glutamate-cysteine ligase (GCL), the rate-limiting enzyme for GSH synthesis, in ethanol-treated cells and mice. mRNA levels of the modifier subunit of GCL and glutathione synthetase were increased in mice treated with SAMe combinations. SAMe, taurine, and/or betaine pretreatment restored serum ALT and AST levels to control levels in the ethanol-treated group. CONCLUSIONS Combinations of SAMe with taurine and/or betaine have a hepatoprotective effect against ethanol-induced liver injury by maintaining GSH homeostasis.
منابع مشابه
Protective Effects of S-Adenosylmethionine and Its Combinations With Taurine and/or Betaine Against Lipopolysaccharide or Polyinosinic-polycytidylic Acid-induced Acute Hepatotoxicity
BACKGROUND Several mechanisms for the pathogenesis of many liver diseases are related with oxidative stress, endotoxins, and infections by many microorganisms. These can lead to chronic hepatitis, cirrhosis, and even liver cancer. The aim of this study was to evaluate the effects of S-adenosylmethionine (SAMe) and its combinations with taurine and/or betaine against hepatotoxicites induced by l...
متن کاملEffects of betaine supplementation on hepatic metabolism of sulfur-containing amino acids in mice.
BACKGROUND/AIMS We previously reported that acute betaine treatment induced significant changes in the hepatic glutathione and cysteine levels in mice and rats. The present study was aimed to determine the effects of dietary betaine on the metabolism of sulfur-containing amino acids. METHODS/RESULTS Male mice were supplemented with betaine (1%) in drinking water for up to 3 weeks. Changes in ...
متن کاملImpaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats.
Nonalcoholic fatty liver is involved in the development of nonalcoholic steatohepatitis and chronic liver injury. Impairment of hepatic transsulfuration reactions is suggested to be critically linked with alcoholic liver injury, but its role in nonalcoholic fatty liver remains unknown. We examined the early changes in sulfur-amino acid metabolism and their implication in nonalcoholic fatty live...
متن کاملCo-administration of equimolar doses of betaine may alleviate the hepatotoxic risk associated with niacin therapy.
High-dose niacin has versatile and substantial efficacy for the treatment of hyperlipidemias, but its utility is compromised by various side effects, the most serious of which is liver damage. It is proposed that this hepatotoxicity reflects the high demand for methyl groups imposed by niacin catabolism, leading to a reduction in hepatic levels of S-adenosylmethionine (SAM). Depletion of the he...
متن کاملProtective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling
Objective(s): Oxidative stress has been established as a key cause of alcohol-induced hepatotoxicity. Licochalcone B, an extract of licorice root, has shown antioxidative properties. This study was to investigate the effects and mechanisms of licochalcone B in ethanol-induced hepatic injury in an in vitro study. Materials and Methods: An in vitro model of Ethanol-induced cytotoxicity in BRL cel...
متن کامل